翻訳と辞書
Words near each other
・ Clifton-upon-Teme
・ Cliftondale Park, Virginia
・ Cliftonhill
・ Cliftonia
・ Cliftonite
・ CliftonLarsonAllen
・ Cliftonoceras
・ Cliftonville
・ Cliftonville (disambiguation)
・ Cliftonville Cricket Club
・ Cliftonville F.C.
・ Cliftonville Golf Club
・ Cliftonville Hockey Club
・ Cliftonville Hotel, Cromer
・ Clifton–Aldan (SEPTA station)
Clifton–Pohl torus
・ Clifty Creek Power Plant
・ Clifty Falls State Park
・ Clifty Township, Bartholomew County, Indiana
・ Clifty Wilderness
・ Clifty, Arkansas
・ Clifty, Kentucky
・ Clig
・ Clignancourt porcelain
・ Cligès
・ Cliidae
・ Clijsters (surname)
・ Clijsters–Henin rivalry
・ CLiki
・ Climaco Pinto Leandro


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Clifton–Pohl torus : ウィキペディア英語版
Clifton–Pohl torus
In geometry, the Clifton–Pohl torus is an example of a compact Lorentzian manifold that is not geodesically complete. While every compact Riemannian manifold is also geodesically complete (by the Hopf–Rinow theorem), this space shows that the same implication does not generalize to pseudo-Riemannian manifolds.〔.〕 It is named after Yeaton H. Clifton and William F. Pohl, who described it in 1962 but did not publish their result.〔.〕
==Definition==
Consider the manifold \mathrm = \mathbb^2 \smallsetminus \ with the metric
:g= \frac
Any homothety is an isometry of M, in particular including the map:
:\lambda(x,y)=(2x,2y)
Let \Gamma be the subgroup of the isometry group generated by \lambda. Then \Gamma has a proper, discontinuous action on M. Hence the quotient T = M/\Gamma, which is topologically the torus, is a Lorentz surface that is called the Clifton-Pohl torus.〔 Sometimes, by extension, a surface is called a Clifton-Pohl torus if it is a finite covering of the quotient of M by any homothety of ratio different from \pm 1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Clifton–Pohl torus」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.